Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Mol Ther ; 30(9): 2998-3016, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-1821532

ABSTRACT

We established a split nanoluciferase complementation assay to rapidly screen for inhibitors that interfere with binding of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein with its target receptor, angiotensin-converting enzyme 2 (ACE2). After a screen of 1,200 US Food and Drug Administration (FDA)-approved compounds, we identified bifonazole, an imidazole-based antifungal agent, as a competitive inhibitor of RBD-ACE2 binding. Mechanistically, bifonazole binds ACE2 around residue K353, which prevents association with the RBD, affecting entry and replication of spike-pseudotyped viruses as well as native SARS-CoV-2 and its variants of concern (VOCs). Intranasal administration of bifonazole reduces lethality in K18-hACE2 mice challenged with vesicular stomatitis virus (VSV)-spike by 40%, with a similar benefit after live SARS-CoV-2 challenge. Our screen identified an antiviral agent that is effective against SARS-CoV-2 and VOCs such as Omicron that employ the same receptor to infect cells and therefore has high potential to be repurposed to control, treat, or prevent coronavirus disease 2019 (COVID-19).


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Imidazoles , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Animals , Antiviral Agents/pharmacology , Imidazoles/pharmacology , Mice , Protein Binding , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , United States , United States Food and Drug Administration
2.
Mol Ther ; 29(6): 1984-2000, 2021 06 02.
Article in English | MEDLINE | ID: covidwho-1093250

ABSTRACT

The ongoing COVID-19 pandemic has highlighted the immediate need for the development of antiviral therapeutics targeting different stages of the SARS-CoV-2 life cycle. We developed a bioluminescence-based bioreporter to interrogate the interaction between the SARS-CoV-2 viral spike (S) protein and its host entry receptor, angiotensin-converting enzyme 2 (ACE2). The bioreporter assay is based on a nanoluciferase complementation reporter, composed of two subunits, large BiT and small BiT, fused to the S receptor-binding domain (RBD) of the SARS-CoV-2 S protein and ACE2 ectodomain, respectively. Using this bioreporter, we uncovered critical host and viral determinants of the interaction, including a role for glycosylation of asparagine residues within the RBD in mediating successful viral entry. We also demonstrate the importance of N-linked glycosylation to the RBD's antigenicity and immunogenicity. Our study demonstrates the versatility of our bioreporter in mapping key residues mediating viral entry as well as screening inhibitors of the ACE2-RBD interaction. Our findings point toward targeting RBD glycosylation for therapeutic and vaccine strategies against SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/pharmacology , Biological Assay , Lectins/pharmacology , Receptors, Virus/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Asparagine/chemistry , Asparagine/metabolism , Binding Sites , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Genes, Reporter , Glycosylation/drug effects , HEK293 Cells , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Luciferases/genetics , Luciferases/metabolism , Luminescent Measurements , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/genetics , Receptors, Virus/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Virus Internalization/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL